Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Peter G. Jones, ${ }^{\text {a* }}$ Anthony J. Kirby $^{\text {b }}$ and Melanie Pilkington ${ }^{\text {b }}$
${ }^{\mathrm{a}}$ Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany, and ${ }^{\text {b }}$ University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, England

Correspondence e-mail:
jones@xray36.anchem.nat.tu-bs.de

Key indicators

Single-crystal X-ray study
$T=143 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
Disorder in main residue
R factor $=0.048$
$w R$ factor $=0.119$
Data-to-parameter ratio $=13.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

2,2,2-Tris(cyclohexyloxy)-4,5-(2', $2^{\prime \prime}$-biphenylo)-1,3,2-dioxaphospholene

The title compound (2,2,2-tris(cyclohexyloxy)phenanthro-[9,10-d][1,3,2]dioxaphosphole), $\mathrm{C}_{32} \mathrm{H}_{41} \mathrm{O}_{5} \mathrm{P}$, displays trigonalbipyramidal geometry at the central P atom. The $\mathrm{P}-\mathrm{O}$ bond lengths (\AA) are: in the five-membered ring 1.652 (2) \AA equatorial and 1.744 (2) \AA axial, and to the cyclohexyloxy groups 1.581 (2) and 1.589 (2) \AA equatorial, and 1.624 (2) \AA axial.

Comment

We are interested in the correlation between structure and reactivity (see e.g. Amos et al., 1992). The structure of the title compound, (I), the adduct of tricyclohexyl phosphite and phenanthraquinone, was determined as part of a combined crystallographic and theoretical investigation of pKa values of pentaoxyphosphoranes (Davies et al., 2002).

(I)

The structure is shown in Fig. 1; a minor (11\%) disorder component of the ring $\mathrm{C} 11-16$ is not shown. Of the three cyclohexyloxy groups, one is axial ($\mathrm{O} 5, \mathrm{C} 31$ etc.) and the other two are equatorial. This is reflected in the normal bond-length pattern for trigonal-bipyramidal geometry (axial bonds longer than equatorial), as was also observed in pentakis(cyclohexyloxy)phosphorane (Davies et al., 2001; average values in four independent molecules $1.662 \AA$ for axial and $1.606 \AA$ for equatorial $\mathrm{P}-\mathrm{O}$ bonds). The triisopropyloxy analogue of the title compound was subjected to structure analysis in 1967. There were two modifications, of which the more precisely determined modification (Spratley et al., 1967) displayed a similar $\mathrm{P}-\mathrm{O}$ bond-length pattern to the title compound: ring apical 1.751 (7) \AA, equatorial 1.633 (7) $\AA ;{ }^{i} \mathrm{Pr}$ apical 1.638 (6) A., and equatorial 1.588 (7) and 1.574 (7) \AA.

Received 1 February 2002 Accepted 5 February 2002 Online 22 February 2002

Figure 1
The molecule of the title compound in the crystal. The minor disorder component of the ring $\mathrm{C} 11-\mathrm{C} 16$ has been omitted. Ellipsoids represent 50% probability levels.

Experimental

Compound (I) was prepared by adding triisopropyl phosphite to one equivalent of phenanthraquinone at room temperature, according to the method of Hamilton et al. (1967).

Crystal data

$\mathrm{C}_{32} \mathrm{H}_{41} \mathrm{O}_{5} \mathrm{P}$
$M_{r}=536.62$
Monoclinic, $P 2_{1} / n$
$a=9.665(2) \AA \AA^{\circ}$
$b=15.394(3) \AA$
$c=19.200(4) \AA$
$\beta=93.92(2)^{\circ}$
$V=2850.1(10) \AA^{3}$
$Z=4$
$D_{x}=1.251 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 50 reflections
$\theta=10-11.5^{\circ}$
$\mu=0.14 \mathrm{~mm}^{-1}$
$T=143$ (2) K
Prism, colourless
$0.65 \times 0.30 \times 0.30 \mathrm{~mm}$

Data collection

Stoe Stadi-4 diffractometer ω / θ scans
Absorption correction: none
5588 measured reflections
5037 independent reflections 3708 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.024$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0447 P)^{2} \\
&+1.4014 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.21 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.31 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.119$
$S=1.04$
5037 reflections
368 parameters
H -atom parameters constrained

Table 1

Selected geometric parameters $\left(\AA,^{\circ}\right)$.

$\mathrm{P}-\mathrm{O} 3$	$1.581(2)$	$\mathrm{P}-\mathrm{O} 2$	$1.652(2)$
$\mathrm{P}-\mathrm{O} 4$	$1.589(2)$	$\mathrm{P}-\mathrm{O} 1$	$1.744(2)$
$\mathrm{P}-\mathrm{O} 5$	$1.624(2)$		
$\mathrm{O} 3-\mathrm{P}-\mathrm{O} 4$	$117.35(9)$	$\mathrm{O} 5-\mathrm{P}-\mathrm{O} 2$	$88.52(8)$
$\mathrm{O} 3-\mathrm{P}-\mathrm{O} 5$	$92.73(9)$	$\mathrm{O} 3-\mathrm{P}-\mathrm{O} 1$	$94.57(8)$
$\mathrm{O} 4-\mathrm{P}-\mathrm{O} 5$	$91.98(8)$	$\mathrm{O} 4-\mathrm{P}-\mathrm{O} 1$	$84.38(8)$
$\mathrm{O} 3-\mathrm{P}-\mathrm{O} 2$	$115.31(9)$	$\mathrm{O} 5-\mathrm{P}-\mathrm{O} 1$	$172.69(9)$
$\mathrm{O} 4-\mathrm{P}-\mathrm{O} 2$	$127.24(9)$	$\mathrm{O} 2-\mathrm{P}-\mathrm{O} 1$	$88.66(8)$

H atoms were positioned geometrically and refined using a riding model. Cyclohexyl ring $\mathrm{C} 11-16$ is disordered over two positions with a relative occupancy of $c a 9: 1$. The minor component was refined isotropically with an appropriate system of restraints.

Data collection: DIF4 (Stoe \& Cie, 1992); cell refinement: DIF4; data reduction: REDU4 (Stoe \& Cie, 1992); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication:

SHELXL97.

Financial support from the Fonds der Chemischen Industrie is gratefully acknowledged. We thank Mr A . Weinkauf for technical assistance.

References

Amos, R. D., Handy, N. C., Jones, P. G., Kirby, A. J., Parker, J. K., Percy, J. M. \& Su, M. D. (1992). J. Chem. Soc. Perkin Trans 2, pp. 549-558.
Davies, J. E., Kirby, A. J. \& Roussev, C. D. (2001). Acta Cryst. E57, o994-o995.
Hamilton, W. C., LaPlaca, S. J., Ramirez, F. \& Smith, C. P. (1967). J. Am. Chem. Soc. 89, 2268-2272.
Davies, J. E., Doltsinis, N. L., Kirby, A. J., Roussev, C. D. \& Sprik, M. (2002). J. Am. Chem. Soc. Submitted.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments, Madison, USA.
Spratley, R. D., Hamilton, W. C. \& Ladell, J. (1967). J. Am. Chem. Soc. 89, 2272-2278.
Stoe \& Cie (1992). DIF4 and REDU4. Stoe \& Cie, Darmstadt, Germany.

